1-дәріс. Жиын ұғымы. Жиынның түрлері. Жиындарға қолданылатын амалдар және олардың қасиеттері


Жиындарға қолданылатын операциялардың қасиеттері



жүктеу 126.17 Kb.
бет4/4
Дата27.07.2022
өлшемі126.17 Kb.
#20841
1   2   3   4
1-дәріс
Жиындарға қолданылатын операциялардың қасиеттері
Айталық U универсумы берілсін. Олай болса  А,В,С  U төмендегідей қасиеттер орындалады:
1. , операцияларының ассоциативтігі
A(BC)=(AB)C
A(BC)=(AB)C
2. ,операцияларының коммутативтігі
AB=BA;
AB=BA
3. Дистрибутивті заң (үлестіру заңы)
A(BC)=(AB)(AC)
A(BC)=(AB)(AC)
4. Идемпотенттік заң
AA=A; AA=A
5. Жұтылу заңы
A(AB)=A; A(AB)=A
6. Де Морган заңы
=
=
7. Нөл мен бір заңы, айталық 0⇆, 1⇆U онда
А=A; A=;
A1=1; A1=A;
A=1; A=
8. Қос терістеу заңы (инволютивность)

9. Толықтыру заңы.


; 

Жиындарға қолданылатын операциялардың қасиеттерінің дұрыстығына бірнеше тәсілдермен көз жеткізуге болады:


1. Нақтылы жиындар мен амалдарды орындау арқылы (екі жағынан бірдей нәтиже шығады);
2. Венн диаграммасын сызу арқылы;
3. Амалдардың анықтамасын пайдалану арқылы.
 операциясының ассоциативтігін дәлелдейік:
Дәлелдеуі: Ассоциативті заңды дәлелдеу A(BC)=(AB)C (Теру заңы); болсын.
1-тәсіл. Амалдарды орындайық.;
Сол жағы :
Оң жағы: Демек жиындар тең.
2-тәсіл. Диаграммасын салайық:

Диаграммаларының бірдейлігінен жиындар тең деген қорытындыға келеміз.
3-тәсіл.
а)
; Бұдан Енді екінші жағынан,
б)
демек, ; Яғни, A(BC)=(AB)C
Жабу және бөліктеу
Айталық, {Ai | iI} А жиынының бос емес ішкі жиындары болсын. Ai A
Анықтама. Егер A = болса, яғни А жиынының әр элементі Аі жиындарының ең болмаса біреуіне кірсе, онда бос емес {Ai | iI} жиыны А жиынының жабуы деп, ал егер ij болғанда Ai Aj =  болса, жабу бөліктеу деп аталады ( I , jI ij = Ai Aj = ). Басқа сөзбен айтқанда А жиынының бос емес {Ai | iI} ішкі жиындары қиылыспаса яғни А-ның әр элементі бос емес Аі жиындарының тек біреуіне ғана кіретін болса, онда {Ai | iI} жиыны А жиынының бөліктеуі деп аталады.
Мысалы, А={1,2,3} болса, онда {{1,2},{2,3},{3,1}} – А жиынын жабады, ал {{1},{2},{3}} – А жиынының бөліктеуі болады.
жүктеу 126.17 Kb.

Поделитесь с Вашими друзьями:
1   2   3   4




©emirb.org 2022
әкімшілігінің қараңыз

    Басты бет